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Two types of singularity that occur a t  the upper pole of a heated sphere in a fluid 
a t  rest when the Grashof number is large are discussed. The first is a property of a 
limit solution of the unsteady boundary-layer equations and is indicative of the fact 
that the boundary layer growing from the lower pole does not remain empty for all 
time but erupts into a plume above the sphere. The second arises from a solution of 
the steady boundary-layer equations and illustrates the phenomenon of an axisym- 
metric boundary layer converging at  a point, with a velocity component parallel to 
the sphere that is non-zero over the major part of the boundary layer. An analysis 
is prcscnted for each situation and comparison made with a numerical integration 
of the appropriate equations. 

1. Introduction 
Experimental studies by Bromham & Mayhew (1962) and by Jaluria & Gebhart. 

(1975) have shown that a t  high Grashof number the flow around a heated sphere in 
air develops a boundary layer starting a t  the lower pole and evolving a t  the upper 
pole into a vertical plume of fluid that forms above the sphere. Theoretical 
investigations have been confined mainly to t'he solution of the steady boundary-layer 
equations, a recent study being that of Potter & Riley (1980). They present a 
numerical solution for the boundary layer on t'he sphere and discuss the eruption of 
t'he fluid a t  the pole. Their results compare favourably with those of earlier theories 
(e.g. Merk & Prins 1954; Acrivos 1960; Chiang, Ossin & Tien 1964) and with the 
experimental data referenced above. An interesting feature of their work is the 
singularity encountered at the upper pole. From their numerical evidence they 
predicted that a t  this point the skin friction and heat transfer both vanish, and the 
normal velocity and boundary-layer thickness become infinite. 

Here we address ourselves to the same problem and show that there are two types 
of singularity a t  the upper pole : one arising from a solution of the unsteady equations 
after a finite time, and the second from a solution of the steady equations. We present 
an analysis for each type of singularity, supported in each case by a numerical 
integration. 

For the unsteady problem we consider the situation in which the sphere in a fluid 
at  rest is impulsively heated a t  time t = 0, and show that, if it  is assumed that the 
meridional component of velocity parallel to the sphere vanishes at the upper pole, 
then such a situation cannot persist for all time, as the equations that hold in this 
neighbourhood develop a singularity a t  a non-dimensional time t % 2.912. The 
singularity is in the inviscid outer part of the boundary layer, the normal velocity 
and maximum of the meridional velocity tending t>o infinity t'here, with the skin 
friction and heat transfer remaining finite and non-zero. The analytic form of the 
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singularity is very similar to that recently discussed by Simpson & Stewartson ( 1 9 8 2 ~ )  
for the corresponding problem of a cylinder, and to that studied earlier by Banks 
& Zaturska (1979) in the neighbourhood of the equator on a spinning sphere (see also 
Simpson & Stewartson 1982b). The interpretation in the last two situations is that 
boundary layers with separate origins have collided after a finite time. I n  our problem 
we envisage an axisymmetric boundary layer converging at a point with non-zero 
velocity, and initiating an eruption into the plume above it. This is reminiscent of 
the boundary layer on a rotating disc in a counter-rotating fluid, discussed by 
Bodonyi & Stewartson (1977) (see also Stewartson, Simpson & Bodonyi 1982). For 
the sphere under consideration here there is good agreement between the analysis and 
a representative numerical solution of the equations for a Prandtl number of 0.72. 

The second singularity is a property of the steady boundary-layer equations, and 
is that  encountered at the upper pole by Potter & Riley, who integrated these 
equations starting a t  the lower pole. Their study of the equations in the neighbourhood 
of the upper pole supported their predictions that the limiting skin friction and heat 
transfer both vanish, while the normal velocity and displacement thickness become 
infinite. We agree with this view and present an analysis that suggests that this is 
an example of the collision phenomenon found by Stewartson & Simpson (1982) in 
their study of the flow near the entrance of a loosely coiled pipe a t  large Dean number. 
There the boundary layer on the pipe wall separates a t  the inner generator and a 
singularity develops as the axial boundary layer leaves the wall and the circumferential 
boundary layers collide underneath it. The singularity is novel, and not of the 
Goldstein type, as the separation is not caused by an adverse pressure gradient. 
Another example of such a singularity occurs on the lee side of a cone a t  incidence 
(see Cebeci, Brown & Stewartson 1982). For the present study of free convection from 
a heated sphere the analysis is similar to, and somewhat simpler than, that of the 
earlier studies, the position of the singularity is determined by the geometry, and the 
concept of an axial boundary layer forced from the wall by colliding circumferential 
boundary layers is replaced by that of an axisymmetric boundary layer converging 
on a point a t  which the velocity tangential to the sphere does not vanish over the 
major part of the boundary layer. The analysis presented here is in accord with the 
numerical predictions of Potter & Riley, and augments their theory of the collision. 
We have repeated their calculations for a Prandtl number of 0.72 as, in order to 
compare with the proposed theory, we required the limiting skin friction and heat 
transfer to  an accuracy that  could not be deduced from their graphical resuIts. 
However, for discussion of the general properties we shall refer to these. A table of 
comparison shows encouraging agreement with the theory. Potter & Riley went on 
to discuss the eruption and subsequent development of the plume above the sphere. 
Such an investigation is not undertaken here and their conclusions are unaffected by 
the present analysis. 

In the discussion we attempt to interpret the singularities in the wider context of 
the full unsteady boundary-layer equations and of the Navier-Stokes equations. 

2. The governing equations 
The dimensionless boundary-layer equations for the flow of a Boussinesq fluid over 

a heated sphere are, as set out by Potter & Riley (1980) but with the unsteady terms 
retained, 

(2.1 a )  
(-? a 
ax dY 
-(u sin x )  +-(v sin x )  = 0, 
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au au au ~ 2 , ~  

at ax ay a y 2  
-+u - + t 7 -  = -+(l  -T )  sin x, (2.1 b )  

( 2 . l c )  

where t is the time, x measures angular distance from the lower pole, y measures 
distance normal to the sphere, u, v are velocity components in the x- and y-directions 
respectively, and 1 - T is the temperature. The Prandtl number is denoted by cr and 
the boundary conditions for (2.1) are of zero velocity and unit temperature at the 
sphere, and of zero tangential velocity and temperature a t  infinity, so that 

u = v = O ,  T=O a t  y = O ,  

u--0 ,  T - 1  as ~ 4 0 0 ,  

together with suitable initial conditions for the numerical integration starting a t  the 
lower pole, and a condition at t = 0 for the case of the impulsively heated sphere. 

The equations (2.1) have three independent variables. In  the following sections we 
present numerical and analytic solutions of two limiting forms of these equations in 
which the number of independent variables is reduced to two. First, in $3,  we take 
the limit x n and examine the unsteady equations that result; this leads to a 
singularity at t x 2.912. Secondly, in $4, we let t + 00 and show that the resulting 
steady equations have a singularity a t  the upper pole x = n. 

3. The eruption of the plume at finite time 

augmented by 
In any complete solution of (2 .1)  for, say, an impulsively heated sphere, with (2.2) 

(3 .1)  
u = v = T = O  at y = O ,  

u = v = O ,  T = l  for y > O  

when t = 0, and a condition a t  x = 0 for t > 0, i t  is expected that for early times, when 
the eruption of the plume has not taken place, dv/dy in (2.1 a) will be regular at x = n. 
Thus u will be proportional to  n - x, and since disturbances travel with the maximum 
speed of the fluid within the boundary layer the flow in the neighbourhood of x = n 
will be independent of that  over the rest of the sphere. If we take u to  be proportional 
to n - x ,  and then let x --f n, any breakdown in the solution of the resulting equations 
will indicate that the axisymmetric boundary layer has converged at the pole and 
the eruption initiated. I n  (2 .1)  we therefore write 

u = (n -x ) t i  
and let x - n. This leads to 

(3 .3)  

av au ati azti 
-- ti2+ v - = 1 - T + - ,  

dT clT 1 a2T 
--+t>-=-- 

2u = -, (3 .3u,  b )  

(3 .3c)  

dy St dY ay2 

at ay cr ay2’ 

(3 .3u,  b )  

(3 .3c)  

which are to be solved subject, to ( 2 . 2 ) ,  (3.1).  The presence of the factor 2 in ( 3 . 3 ~ )  
is the only difference between these equations and those for the cylinder considered 
by Simpson & Stewartson (1982~) .  The properties of the numerical solution, which 
we carried out here by the same methgd for B = 072 as employed there for unit 
Prandtl number, are similar to those of the solution they obtained. The solution comes 

5-2 
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FIGURE 1. Profiles of a for various values o f t ,  illustrating the increase of 
the maximum value Urnax. 

to an end a t  a finite time, the value of which we estimate below, the non-dimensional 
skin friction and heat transfer remain finite and non-zero, but an essentially inviscid 
singularity develops in the middle of the boundary layer with becoming infinite 
there. Profiles of u exhibiting this property are presented in figure 1 .  

of the maximum value of 
U ,  was decreasing linearly as the computation was coming to an end. This implies 
a balance of the terms d u / &  and u2 in (3.3 b ) ,  and it seemed likely that the singularity 
was of the same form as that for the cylinder. By analogy with the solution there, 

The numerical solution indicated that the inverse 

we therefore set 
7 = t,-t. (3.4) 

where t, is the unknown time a t  which breakdown occurs, and seek a solut,ion of (3.3) 
of the form 

m 

(3 .5)  
1 1 Ot' u = - C T ~ ~ u , ( z ) ,  o = 7 C T ~ I ~ ( z ) ,  T = C hnTn(z) 

7 n-o Y7' n=o n=o 

when 7 + 1 ,  and 
3 = 2y7%J, (3.6) 

y being an unknown constant. It emerges that in order to obtain a satisfactory match 
with a solution valid in the neighbourhood of the wall the series (3 .5)  must also 
contain terms in dn(log 7 ) m .  The first, with m = 1 ,  occurs when n = 3. 

From (3 .3a ,  h )  we first obtain the equations for the functions uo, v0. The term 1 - T 
is of relative order r2 and the viscous term of relative order r4, so the right-hand side 
of (3 .3b )  is negligible until n = 4. For uo, t j o  we have 

uo = v;, uo - ;zu; - tk; + 2Vo u; = 0,  (3 .7a,  6) 

u;(uo-u; )  = -&@, (3.8) 

which yield, on differentiation of (3 .76)  and elimination of vo, 
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the integration of which is elementary. If we set ui = H ( z ) ,  incorporate the constant 
of integration into y ,  and insist that H does not become exponentially large with z ,  
it  follows that the solution of (3.8) is 

where 
uo = (1+H2)-', 

- = - 4 ( l + H 2 ) ) " .  
dH 
d z  

(3.9) 

(3.10) 

From (3.10) we obtain the relation between z and H ,  with 2- 0 as H 4 co, so that 
un a 0 as z -0, as we anticipate that u will be a regular function of 7 in the wall 
layer with which this solution must match: this implies that 

H 
l + H 2 '  

z = arccot H-- 

Then from (3.7b) the corresponding solution for v,, is 

H 
2 ( 1 + H 2 ) 2 '  

t i o  = iz - 

(3.1 1 )  

(3.1%) 

From ( 3 . 3 ~ )  we now have T to O(7f ) .  The result is 

T = an-ka,7?H+0(7), (3.13) 

where a, and a, are arbitrary constants. 
This leading-order solution requires some comment. I n  the case of the impulsively 

heated cylinder, Simpson & Stewartson found the corresponding solution by writing 
the inviscid equations in terms of a suitably defined stream function. The same 
technique may be employed here, the advantage of it being that the variable z in 
(3.6) and the forms (3.5) for C, v, T emerge naturally. However i t  is cumbersome for 
the calculation of the higher-order terms, so in the interest of brevity we have omitted 
it here, and have assumed (3.5), (3.6) ab initio. The significance of H and its 
relationship with z is as follows. The numerical work indicates that ti has a maximum, 
the value of which tends to infinity as 7 4 0 in the outer part of the boundary layer 
now under discussion. At this value of z ,  u;I = H = 0, and H increases as z decreases, 
and decreases as z increases. As H -7 00, z - 0 with, from (3.11), H x ($z)-i and as 
H - -a, z + 77 with H x -($(n-z))-i.  Thus, in terms of z ,  this outer inviscid 
singular layer is confined to (0, n). Below it there is a viscous boundary layer and 
above the viscous terms are again important. The constant of integration in (3.11) 
was chosen so that z + 0 as H --f co and this layer may be matched directly to the 
wall layer. The value of amax from the numerical work provides an immediate check 
on the theory, since i t  follows from (3.3b) that, when &/dy = 0, 

(3.14) 

with a relative error of order -r2. Thus 
1 

Urnax = -+ o(7) (3.15) 
7 

the leading term of which is given by (3.9) with H = 0 . In  table 1 we tabulate amax, 
its inverse, and the value of v a t  the edge of the boundary layer, all as given by the 
numerical work. Then by consideration of Umax - 7-1 for various t ,  we infer that  

t ,  x 2.912. (3.16) 
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t 

0 
1 .o 
2.0 
2.5 
2.6 
2.7 
2.8 
2.805 
2.8 10 
2,815 
2.820 
2.825 
2.830 
2.835 

- 
Urnax 

0 
027187 
093480 
2.3433 
3.1405 
46727 
89058 
93242 
97835 

10290 
10851 
1 1 4 7 7  
12.180 
12.973 

3.6782 
1.0698 
0.42676 
0.31842 
021401 
0,11229 
0.10725 
010221 
0.097 18 
0.09215 
008713 
0.08210 
0.07708 

urn 

0 
1.2120 
96836 

65913 
12841 
32820 

15759 
1763.8 
1985.0 
2247.6 
2561.9 
2942.0 
34066 
3981.7 

TABLE 1 .  The maximum value of a in the boundary layer, the inverse of this value, and the 
value of v at the edge of the boundary layer 

The arbitrary constant y will also be determined by the numerical work, but before 
so doing we calculate ul, v, and discuss the solutions in the viscous regions near z = 0 
and beyond z = m, as these provide restrictions on the inviscid solution. The equations 

so that 
A1 2B1H, v - 

2A1 H 
u1= 1+H2- 

(3.17) 

(3.18) 

where A , ,  B, are arbitrary constants. We anticipate that in the inner layer the 
solution of (3.3) will be of the form 

(3.19) 
n=o n=o n=o 

with only integral powers of 7 appearing as the numerical work indicates that the 
solution is regular there. Here Bn(0) = U L ( 0 )  = pn(0) = 0 to satisfy the boundary 
conditions on the sphere; go ,  T, are otherwise arbitrary and will depend on the 
previous history of the boundary layer, since a, v, T in (3.19) are assumed to be 
regular functions of 7 ,  except that 

Uh(y) x 2(3yy)%, T, % a, as y + co, (3.20) 

in order that the leading terms of a, T may match, as y + co, with those given by 
(3.10), (3.7) as z --f 0 (H L* 00).  Subsequent B,, may then be calculated successively. 

@i(y) = - f i ; z + f i  0 0  v”’-2(1-T)-”’” 0 0 1  (3.21) 
For example - 

T,(y) = Boz-; 1 To -,, 
(3.22) 

Consider now the term -2BlH in u, in (3.18). As H - 00 this will contribute a term 
O(7-l) to the inner solution, which is unacceptable. Thus B, = 0. 
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In  the outer viscous region beyond z = 7r we expect the solution to be of the form 

m oc. 1 “  
@ = n  x 7nv; (Y ) ,  ‘ L t =  h’(7)+ x P i q Y ) ,  r =  7 n q ( I ’ ) ,  (3 .33)  

L n-0 

where 
n=o n=o 

I’ = y+h.(7) ,  (3 .34)  

and h‘(7) is the value of v given by the solution in the centre inviscid region as z - 7r. 
Thus, from (3 .12) ,  we have the leading contribution 

(3 .25)  

and this is also the leading contribution to the value v, of t i  as y -+ co. The results 
for v, from the numerical work are also displayed in table 1, from which we estimate 
03661 as the best-fit value for y.  In  (3 .23)  the functions 6,  are arbitrary, except 

F ~ + o ,  % + I  as Y + c o ,  (3 .26)  
that 

to satisfy the conditions as y - co, and 

r i z 2 ( - 3 y Y ) % ,  % x u o  as Y--co,  (3 .27)  

so that a, T in (3.23) may, to leading order, match with (3 .10) ,  (3 .7)  as H + - cc 
( z  + n). Successive rn, pn may be calculated without difficulty. 

To find the subsequent singular terms in v, as 7 --f 0 it  is necessary to  continue 
the expansions (3 .5)  beyond the terms t io ,  z+ already found. For u2, v2 we obtain 

u2 = 2 A ~ ( ~ - ~ ) + A 2 ( 4 - ~ + 2 z H ) ,  2 4 
(3 .28)  

(3 .29)  

where A ,  is a second arbitrary constant and the coefficient B, of the other 
complementary function has been set equal to zero for the same reason as was B, 
in (3 .18) .  From v2 we obtain a contribution -A2n/2y7!  to v,, which is also a 
contribution to h’(7) in (3 .25) .  The term 2A,zH as z 4 7r in (3.28) is to be considered 
in conjunction with the term H-2 in uo for 1Hl 9 1, and is required in order that, as 
z + 7r, u shall consist of a series of integral powers of 7 with coefficients that  are 
functions of Y .  It must be remembered that we have adjusted the definition of Y 
a t  this stage because of the correction to h’(7).  I n  fact, a t  the u,, v3 stage of the 
expansion insistence that the solution remains of the required form suggests that  A ,  
should be zero, so, as it gives no contribution to amax or v,, we set A ,  = 0 and obtain 

log (1  + H 2 )  +-- (3 .30)  
1 + H 2  

2 log (1 + H 2 )  1 - 1  +- B3 ) 1 + H 2 ’  
(3.31)  

where A , ,  B, are arbitrary constants. The term proportional to H log J H ]  in u, for 
IHI 9 1 will force a logarithmic term on the wall boundary layer unless a term 
0(d log 7 )  in u and O(7-l log 7) in 21 are included in (3 .5) .  The term to add to a is 
(71 log 7)2kt3H and to v is (7-1 log 7 ) 2 A 3 / ( 1  + H 2 ) .  If these terms are taken in 
conjunction with (3 .30) ,  (3 .31)  then the wall boundary layer and the viscous layer 
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beyond z = n have no logarithmic terms a t  this stage. The term in T - ~  log T gives a 
contribution to the equation for v3.  the solution of which is now 

2 log (1  + H 2 )  1 B3 
u 3 = $ 3 (  l t H 2  + ( l + H ” J  +- 1+H2 

(3.32) 

instead of (3.31), so there is no term O ( T - ~ )  in v,. 

has the acceptable complementary function 
It may be shown that vm has a term O(r-4) by considering the equation for v4, which 

25H 7H(5 + H 2 )  
6( 1 + H 2 ) +  6(1+ H2)’  

v, = B,{ (3.33) 

for arbitrary constant A,. Thus altogether we have 

(3.34) 
7r 

v, = h’(7) = ~ ( ~ - B A z T + A 4 T 2 ) + 0 ( T - 1 ) ,  
Y T2 

where A,,  A,, as well as y ,  can be estimated from the numerical work. The fit is 
satisfactory with y = 0.3661 and A,  = -0.38, A,  = 0.22. Further constants, for 
example a,, a,, can be estimated if required. 

This completes the discussion of the singularity that occurs a t  the upper pole at 
finite time. I n  $4 we analyse a singularity of a solution of the steady equations that 
occurs as x+ n. 

4. The singularity of the steady equations as x --f n 

I n  this section we address ourselves to the problem considered by Potter & Riley 
(1980). They integrated the steady form of (2.1) from x = 0 and showed that as x - n 
the solution becomes singular, the skin friction and heat transfer tend to zero and 
the normal velocity and boundary-layer thickness become infinite. We extend their 
analysis of the singularity, showing that it may be regarded as an example of the 
colliding boundary-layer phenomenon first resolved by Stewartson & Simpson (1  982) 
in the case of entry flow in a curved pipe. Here the axisymmetric boundary layer 
reaches the upper pole with non-zero tangential velocity over the main portion of 
the layer and the plume erupts. As in the situation of the curved pipe there are two 
regions to discuss, one near the wall and a, second outer inviscid region below the 
original boundary layer that  has been forced away from the wall. Unlike the unsteady 
problem of $3, where the singularity is essentially inviscid, with the viscous regions 
remaining almost regular as the singularity in time is approached, here i t  is the 
viscous regions that are most affected by the singularity. 

To study the neighbourhood of x = n we write 

x = 77-x, (4.1) 

where 9 -4 1 .  We first consider the region y -4 1 and, since figure 3 of Potter & Riley 
indicates that  near x = n the temperature is almost constant near the wall, we replace 
the steady form of (2.1) by 

au sv x-+u-x- = 0, 
ax aY 

(4.2U) 

au au aZu 
- u -+v - = -+ x, ax sy ay2 

(4.2 b )  
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( 4 . 2 ~ )  

with a relative error that turns out to be O ( X )  modified by an appropriate power of 

When y 4 1 the required variable is of the same form as that employed by 
log x-1. 

Stewartson 8.z Simpson (1982) for the curved-pipe problem, and we write 

11 = YPi, (4.3) 

where p(  9 1 )  is a function of X to be found. We then express u, v ,  T in (4.2) in the 
forms 

where a , p  are constants to be found. The value of a will be determined by the 
requirement of self-consistency of the inner solution, but p will remain arbitrary. We 
suspect that, like the other two constants that  will emerge from the inner solution, 
it is determined in part by the previous history of the boundary layer. The functions 
U ,  V, S are then expanded as 

00 m 

u = q+ z p-"",(q), I/ = r 2 +  z p-4n'3Vn(q), 
n-1 n=1 

m 

S = q+ c. p-4n/3Sn(q), (4.5) 

where we require U,(O) = VJO) = S,(O) = 0, and that U,, V,, S, are not exponen- 
tially large as 7 --f co. 

n-1 

The equations for U ,  8, S are, from (4.3), (4.4), 

( 4 . 6 ~ )  

(4.7) 
XP' 

where we have defined 
6 =  -- 

P 
and shall find that 6 = O(pd) .  

& Simpson. The equations for U,, V, are 
As (4.6a, 6 )  are independent of S the analysis is simpler than that of Stewartson 

and on eliminating 

and, since U;'(O) = 

2 u, - v; - 6p%) = 0,  

u;l- v,-r/J2iJ;+2~Ul-6r/2p~+ 1 = 0,  

V, we deduce that 

- 1 ,  
34 

(-') I 
6p3 = ~ - - 1.0650 = a,, say. 

3 '  

( 4 . 8 ~ )  
(4.8 b)  

(4.9) 

(4.10) 
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PI pi = $a1 log -, x 
where p1 is an arbitrary constant. 

From ( 4 . 6 ~ )  the equation for S,  is 

(4.11) 

(4.12) 

and since this has a complementary function, namely 7, that  satisfies both boundary 
conditions i t  will have an acceptable solution only if a satisfies a certain condition, 
which is easily found to be 

(4.13) 

On use of (4.9) to substitute for [TI, and (4.8a) for V,, this integral may be evaluated 
to  give a as a function of 0- in the form 

Q 1 - 0-)+ &?(a) + 1 - 0-, Q - a  ( 
4 
b 

where 
= lom e-q3/3dy = 39(9)! = 1.2879, 

and B(n) is the incomplete beta function: 

(4.14) 

(4.15) 

If 0- = 1 ,  a = -0.01791; if 0- = 0.72, a = -0.03245 and if 0- = 0, a = -5. As in the 
problem of the curved pipe, t'he equations for ti,, V,, S, have a complementary 
function, which in this case is 

u n  = Y n y ,  J'n = Y n T 2 ,  Sn = c n q  (n  Z I ) ,  (4.17) 

where Y,, c, are constants, and, as there, each y n  is determined by a compatibility 
condition on the equation for .CJn+l, except for y l ,  which is indeterminate, and the 
compatibility requirement may then be satisfied by the addition of a term O(p-9) to 
S so that (4.10) becomes 

s = a,p-~+a;a,p-I, (4.18) 
and (4.11) is replaced by 

(1.19) P I  p% - a1 a2 log (put + a1 a2) = #a1 log -. s 
Here we have calculated 

a2 = 4-6 log 3-&2/9 7~ = -0.1728. (4.20) 

Each c, is determined by the requirement that  the equation for S,,, has an 
acceptable solution, and in all the expansion contains the three arbitrary constants 
P1. y1 and p ,  which depend on the flow conditions in X > 0. We now compare this 
theory with a numerical integration of (2.1). 

We integrated the steady form of (2.1) from x = 0 with 0- = 0.72 as did Potter & 
Riley. The general form of the solution was evident from their work, but we wished 
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X 

3 0  
3.01 
3.02 
3.03 
3.04 
305 
3.06 
3.07 

c 
008703 
008 104 
007503 
006900 
0.06294 
005686 
005075 
0.0 4 4 6 2 

9 

03243 
03247 
03250 
03254 
03257 
03261 
03264 
03268 

TABLE 2. Values of c and s, as defined in (4.21) and (4.22), aalculated from 
the numerical integration 

to make a qualitative comparison with the detailed structure outlined above. We 
make two comparisons, one on the skin friction and the other on the heat transfer. 
Using (4.4), (4.5), we first identify ,u with a non-dimensional skin friction 
7 = X-l(au/LJy)ySO, since p/7 = 1 +O(pd) ,  and tabulate 

(4.21) 

against x, which from (4.19) should be close to ( m - x ) / p 1  as x .+ m. A similar test was 
applied by Stewartson & Simpson. The results are shown in table 2, which would 
indicate 3.1416 as the position of the singularity with PI x 1.58. This is a much more 
severe test of the theory than a check that the skin friction vanishes a t  x = n, since 
we have already removed the factor n-x ,  and in view of the order of magnitude of 
the errors in the formula (4.21), and the distance of the end of the range of integration 
a t  x = 3-07 from the pole x = m it is felt that the comparison is fairly convincing. 

Also in table 2 we tabulate 

s = 5-17-"-4(dT/ay)y-O' (4.22) 

which should tend to the constant p as x -7 n. We note that s is almost constant over 
a wide range of x and infer that p x 0-328. 

We now proceed to examine the outer structure near the singularity. The main 
purpose of this investigation is to ensure that it can be matched to the inner structure. 

In  the region away from the immediate neighbourhood of y = 0 we assume that 
the solution is inviscid, and then, on defining a stream function 1c. such that 

allc allc 
aY ax u s i n x  =-, vsinx = --, (4.23) 

we may write the steady solution of (2.1) in terms of two arbitrary functions of $. 
First, from (2 . lc ) ,  

T = F(1c.L (4.24) 

and then, from (2.lb), 

& Z =  - ( l - T )  cosx+f($). (4.25) 

This means that, near x = m, 

(4.26) 



134 

and hence that @ is of the form 
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9 = H ( X y - g ( X ) )  (4.27) 

for arbitrary functions p, g. This solution is consistent with that of Potter & Riley, 
who in their figures 3 and 3 show that the velocity and temperature become functions 
of X y  as X + 0. We shall argue below that g(0) is finite. The corresponding velocity 
component 17 takes the form 

(4.28) 

which is O(X?) in a region in which y = O(X-’) ,  as predicted by Potter & Riley in 
their figure 5. If we define 

1; = Xy-g(X), (4.29) 

the solution when 1; = O(1) takes on the form 

9 = H,( Yl) + C‘XH;( &) + O(X2), (4.30) 

T = T,( l;)+CXT,’( q ) + O ( X 2 ) ,  (4.31) 

where c! is an arbitrary constant, the viscous terms being important at O(X3). Here 
H i ,  T, - 0 as 8 4 - co . Evidence in support of the interpretation of the phenomenon 
as a collision is provided by the fact that  u = Hi(  K )  when Yl = 0(1) and is not 
proportional to X .  Thus away from the immediate neighbourhood of the sphere the 
limiting tangential velocity does not vanish. 

The inviscid solution given by (4.24), (4.25) must match, as 9 + 0, with the 
solution (4.5) as 7 4 co. We shall gain no further information from this match except 
that the theory is consistent. I n  the curved-pipe problem the asymptotic form of the 
quantity corresponding to g ( X )  was determined at this stage, but here it, emerges that 
the appropriate integral is finite and so its value can be obtained only by knowledge 
of the integrand over the whole range, which we do not have. 

Now i t  follows from (4.5), (4.9) that, when 7 % 1, 

= Lk;uj(7 +p-!( - log + rl + . . . ) + o(~-B)}, (4.32) 

where rl is related to  the unknown constant y l ,  so that, as p + co with y fixed, 

u = Xyp{ l  -+alp-: log p+O(p-f)}. 

@ = &Py”{ 1 -+alp-% log p + O(pd) } .  

(4.33) 

(4.34) 

pt= Y + + l ( a , + ~ ) l o g Y + O ( l )  (4.35) 

Thus, since a@/& = Xu we have 

But from (4.19) we infer that  

when Y 9 1,  where 

and hence from (4.36) that  

(4.36) 

(4.37) 
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In  a similar way i t  may be shown that 

Since { f ( @ )  + 1 -F(@)}i  = O ( @ i Y i )  as @ -, 0 the formula Xu = a@/ay gives 

(4.39) 

and the integral converges as @ + 0. Thus g(0) is finite and its value cannot be found 
by study of the local properties only of the singularity. I n  the inviscid region, 
therefore, the leading-order contribution to u and v may be written as 

u = Ro(Xy), v = yH,(Xy)/X (4.40) 

for an arbitrary function Po. This clearly cannot be valid right to the edge of the 
boundary layer, since v < 0 there, while from (4.40) v has the sign of u and is large 
and positive for small X. For some Xy the viscous terms of (2.1) must be non-negligible 
again, and the outer viscous solution is either of similarity form, or i t  depends on 
the previous history of the boundary layer. We have been unable to find an 
appropriate similarity solution and therefore favour the latter. Indeed, if Mangler’s 
(1945) transformation is applied to the steady form of (2.1),  although they cannot 
be reduced entirely to two-dimensional form, the appropriate variable in the direction 
normal to the sphere is found to be Xy, which would indicate that the solution in 
the viscous layer is also of the form (4.30), (4.31), with go in (4.40) exponentially small 
as Xy + 00. Subsequent terms in the expansion would allow for a change of sign of 
v. However, Mangler’s transformation is itself singular as X + 0 and can only be used 
to suggest that Xy is the appropriate variable in both the inviscid and outer viscous 
regions. We were unable to make a conclusive deduction from the numerical work, 
as in this region the quantities were all very small, typically O(10-3). 

5. Discussion 
It is of interest to try to interpret the singularities discussed here in the wider 

context of the solution of the full unsteady boundary-layer equations for the complete 
flow around the sphere, or even in that of the Navier-Stokes equations. For a solution 
of the unsteady boundary-layer equations the conditions required are a specification 
of the whole flow and temperature fields at t = 0, and boundary conditions on the 
sphere and at infinity a t  all times together with an initial condition a t  the lower pole 
z = 0. For sufficiently small time, dv/dy will be regular a t  z = m, the meridional 
velocity u will vanish there and the flow near the upper pole may be discussed 
independently of that over the rest of the sphere. This continues until the equations 
exhibit the singularity a t  finite time that is the subject of $3. We interpret the 
singularity as heralding the collision of the axisymmetric boundary layer with itself, 
and i t  would be of interest to  see if the time coincided with that at which a solution 
of the full unsteady equations predicted a boundary layer that  was no longer empty 
at the upper pole. An exactly analogous situation occurs in the case of the cylinder 
discussed by Simpson & Stewartson (1982a), except that  there two boundary layers 
of disjoint origin are colliding at the upper generator. 

One can make conjectures about the fate of the solution of the full unsteady 
boundary-layer equations after the time a t  which the axisymmetric boundary layer 
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has converged on itself, or, in the case of the cylinder, a t  which the tangential velocity 
is no longer zero at the upper generator. I n  the latter geometry the situation seems 
fairly clear. Each boundary layer is unaware of the presence of the other, so i t  would 
be expected that the solution would continue free of singularities as long as the flow 
does not separate a t  a finite time. If i t  did, a viscous singularity of the Moore- 
Rott-Sears type (Sears & Telionis 1975) would most likely be encountered. However, 
the studies of Ingham (1978) indicate that this is not so, but that  at large time the 
solution approaches that of Merkin (1976), which does not separate until x > 7r. Thus 
for 0 < x < 7r we would expect a solution regular for all t .  For the sphere, however, 
the picture is not so clear because of the singularity of the steady equations a t  x = 7r 
and because of the fact that  the boundary layer is immediately aware of the collision 
and eruption that occurs when it is no longer empty a t  the upper pole. One possibility 
is that the singularity that we have found of the unsteady equations at the upper 
pole is in fact spurious and the solution of the full unsteady equations will either 
terminate in a Moore-Rott-Sears singularity or will not exhibit any non-zero 
tangential velocity at the upper pole at any finite time. However, this is not in accord 
with experimental observations, which confirm a definite eruption of the plume. It 
is likely that this will occur a t  a time that terminates the validity of the boundary-layer 
equations in the neighbourhood of x = m. From then on, since the meridional velocity 
is no longer zero there, it is necessary to match with a solution of the full Navier-Stokes 
equations valid in that region. The boundary-layer solution may then be regarded 
as an outer solution. We anticipate that as t + co this outer solution tends, as x - 7r, 
to the singular solution of the steady equations discussed in $4, though further 
large-scale numerical solutions are required before this conjecture can be confirmed. 

We are grateful to Professor K. Stewartson for his encouragement with this 
problem. 
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